Fluence rate as a modulator of PDT mechanisms.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Molecular oxygen in the tissue to be treated by photodynamic therapy (PDT) is critical for photodynamic cell killing. The fluence rate of PDT light delivery has been identified as an important modulator of tissue oxygenation and treatment outcome. This article provides supporting evidence for the role of fluence rate in PDT and discusses the underlying mechanisms. STUDY DESIGN/MATERIALS AND METHODS Intratumoral pO2 was measured polarographically in murine tumors before and during PDT light treatment using the Eppendorf pO2 Histograph. Tumor response as a function of fluence rate and fluence was also assessed in murine tumor models. Changes in vascular permeability as a function of fluence rate were determined in murine tumors by measuring tumor uptake of fluorescent beads (200 nm diameter). RESULTS Severe oxygen depletion is shown to occur within seconds of illumination at a fluence rate of 75 mW/cm2 in radiation-induced fibrosarcoma (RIF) tumors photosensitized with AlPcS2. This effect was reversible and consistent with photochemical oxygen depletion, which has been shown by us and others to be fluence rate dependent. It is demonstrated that fluence rate affects the PDT tumor response in the Colon 26 tumor model, high fluence rate diminishing or even totally inhibiting tumor control, low fluence rate promoting tumor control. The influence of fluence rate is not restricted to cytocidal effects, but can also be seen in sublethal conditions such as vascular permeability. CONCLUSIONS Fluence rate of PDT light delivery exerts far-reaching control upon treatment outcome through its oxygenation modulating properties and possibly other mechanisms yet to be identified. This has been shown to be true in the preclinical and clinical setting. Further development of in situ dosimetry will be necessary to take full advantage of these discoveries.
منابع مشابه
Effects of combined photodynamic therapy and ionizing radiation on human glioma spheroids.
The effects of combined photodynamic therapy (PDT) and ionizing radiation are studied in a human glioma spheroid model. The degree of interaction between the two modalities depends in a complex manner on factors such as PDT irradiation fluence, fluence rate and dose of ionizing radiation. It is shown that gamma radiation and PDT interact in a synergistic manner only if both light fluence and ga...
متن کاملChoice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors.
The rate of light delivery (fluence rate) plays a critical role in photodynamic therapy (PDT) through its control of tumor oxygenation. This study tests the hypothesis that fluence rate also influences the inflammatory responses associated with PDT. PDT regimens of two different fluences (48 and 128 J/cm(2)) were designed for the Colo 26 murine tumor that either conserved or depleted tissue oxy...
متن کاملBlood flow dynamics during local photoreaction in a head and neck tumor model
We have applied continuous blood flow dynamics, quantified with diffuse correlation spectroscopy (DCS), in investigating photodynamic therapy (PDT) induced local photoreaction in a head and neck tumor model. Photoclor (0.47μmol/kg) was intravenously administered 24 h before PDT. Two types of fluence rates were implemented: Low fluence rate (14mW/cm2) and high fluence rate (75mW/cm2). The total ...
متن کاملFluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor(®))-mediated PDT in reduc...
متن کاملEffect of photosensitizer dose on fluence rate responses to photodynamic therapy.
Photodynamic therapy (PDT) regimens that conserve tumor oxygenation are typically more efficacious, but require longer treatment times. This makes them clinically unfavorable. In this report, the inverse pairing of fluence rate and photosensitizer dose is investigated as a means of controlling oxygen depletion and benefiting therapeutic response to PDT under conditions of constant treatment tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 38 5 شماره
صفحات -
تاریخ انتشار 2006